
WEMADE - Kurrency Security Audit

 : Kurrency PLAY

Oct 13, 2023

Revision 1.0

ChainLight@Theori

Theori, Inc. (“We”) is acting solely for the client and is not responsible to any other party.
Deliverables are valid for and should be used solely in connection with the purpose for which they
were prepared as set out in our engagement agreement. You should not refer to or use our name
or advice for any other purpose. The information (where appropriate) has not been verified. No
representation or warranty is given as to accuracy, completeness or correctness of information in
the Deliverables, any document, or any other information made available. Deliverables are for the
internal use of the client and may not be used or relied upon by any person or entity other than
the client. Deliverables are confidential and are not to be provided, without our authorization
(preferably written), to entities or representatives of entities (including employees) that are not
the client, including affiliates or representatives of affiliates of the client.

© 2023 ChainLight, Theori. All rights reserved

1
2
3
4
4
5
5
6
7
8
8

9
11
12

14

16
18
20
22

Table of Contents

WEMADE - Kurrency Security Audit
Table of Contents
Executive Summary
Audit Overview

Scope
Code Revision
Severity Categories
Status Categories
Finding Breakdown by Severity

Findings
Summary
#1 KURRENCYPLAY-001 Implied price (from exchangeRatio) lower than the market price may
lead to usability issues
#2 KURRENCYPLAY-002 rpow() function is missing in MathUpgradeable library
#3 KURRENCYPLAY-003 SafeERC20 library must check that the token address is a contract
#4 KURRENCYPLAY-004 Dust threshold should be reduced for tokens with decimals lower than
18
#5 KURRENCYPLAY-005 PlayManager should use token's decimals instead of 18 for some
calculations involving token amount
#6 KURRENCYPLAY-006 MP enabled NCPStaking pool must not be used in the investor
#7 KURRENCYPLAY-007 Additional sanity checks
Revision History

 WEMADE - Kurrency Security Audit | 2© 2023 ChainLight, Theori. All rights reserved

Executive Summary

Starting on September 27, 2023, ChainLight of Theori assessed the Kurrency PLAY for four days.
Kurrency PLAY is a new product based on Kurrency's code that we audited multiple times across
revisions. Most code changes were deletions since it does not have liquidation or collateral asset
investing. Codes differences from the original Kurrency were reviewed more thoroughly, although
we also checked other parts. We focused on identifying issues that put collaterals at risk, allow
unauthorized modification of configuration parameters, or diverge from the intended behavior.

As a result, we found seven (including a critical issue that could lead to theft of funds, one
medium issue that could lead to partial theft of funds when uncommon configuration is used, and
five informational issues concerning potential threats and defense-in-depth) issues. Any
regulation issues are out of the scope of this security audit; specifically, this assessment does not
consider any legislation or regulation on stablecoins and financial products in general from any
legislative or regulatory body based in Singapore or South Korea.

The report does not take into account any Maximum Extractable Value (MEV) issues, which have
minimal impact on the WEMIX 3.0 blockchain that uses a highly centralized consensus algorithm
(Stake-based Proof of Authority) that inherently allows operators and stakeholders to
disincentivize attack attempts by slashing the offender from the consensus process.

For more information, please check the finding details below.

 WEMADE - Kurrency Security Audit | 3© 2023 ChainLight, Theori. All rights reserved

Audit Overview

Scope

Name WEMADE - Kurrency Security Audit

Target /
Version

Git Repository (kurrency-contract-play-audit): commit
1583d4aea7492ba7de08616119293bc06229cc15 ~
ece8367dfeacf9cbf57dd2ec502add8cb44c66b9

Application
Type

Smart contracts

Lang. /
Platforms

Smart contracts [Solidity]

Code Revision
N/A

 WEMADE - Kurrency Security Audit | 4© 2023 ChainLight, Theori. All rights reserved

Severity Categories

Severity Description

Critical
The attack cost is low (not requiring much time or effort to succeed in the
actual attack), and the vulnerability causes a high-impact issue. (e.g., Effect on
service availability, Attacker taking financial gain)

High
An attacker can succeed in an attack which clearly causes problems in the
service’s operation. Even when the attack cost is high, the severity of the issue
is considered “high” if the impact of the attack is remarkably high.

Medium
An attacker may perform an unintended action in the service, and the action
may impact service operation. However, there are some restrictions for the
actual attack to succeed.

Low
An attacker can perform an unintended action in the service, but the action
does not cause significant impact or the success rate of the attack is
remarkably low.

Informational Any informational findings that do not directly impact the user or the protocol.

 WEMADE - Kurrency Security Audit | 5© 2023 ChainLight, Theori. All rights reserved

Status Categories

Status Description

Confirm
ChainLight reported the issue to the vendor, and they confirm that they
received.

Reported ChainLight reported the issue to the vendor.

Fixed The vendor resolved the issue.

Acknowledged The vendor acknowledged the potential risk, but they will resolve it later.

WIP The vendor is working on the patch.

Won't Fix
The vendor acknowledged the potential risk, but they decided to accept
the risk.

 WEMADE - Kurrency Security Audit | 6© 2023 ChainLight, Theori. All rights reserved

Finding Breakdown by Severity

Category Count Findings

Critical 1 KURRENCYPLAY-005

High 0 N/A

Medium 1 KURRENCYPLAY-004

Low 0 N/A

Informational 5

KURRENCYPLAY-001
KURRENCYPLAY-002
KURRENCYPLAY-003
KURRENCYPLAY-006
KURRENCYPLAY-007

 WEMADE - Kurrency Security Audit | 7© 2023 ChainLight, Theori. All rights reserved

Findings

Summary

ID Title Severity Status

1 KURRENCYPLAY-001
Implied price (from exchangeRa
tio) lower than the market pric
e may lead to usability issues

Informational Won't Fix

2 KURRENCYPLAY-002
rpow() function is missing in M
athUpgradeable library

Informational Fixed

3 KURRENCYPLAY-003
SafeERC20 library must check t

hat the token address is a cont
ract

Informational Fixed

4 KURRENCYPLAY-004
Dust threshold should be reduce
d for tokens with decimals lower
than 18

Medium Fixed

5 KURRENCYPLAY-005

PlayManager should use toke
n's decimals instead of 18 for s
ome calculations involving token
amount

Critical Fixed

6 KURRENCYPLAY-006
MP enabled NCPStaking pool

must not be used in the investor
Informational Fixed

7 KURRENCYPLAY-007 Additional sanity checks Informational Fixed

 WEMADE - Kurrency Security Audit | 8© 2023 ChainLight, Theori. All rights reserved

#1 KURRENCYPLAY-001 Implied price (from exchangeRatio) lower

than the market price may lead to usability issues

ID Summary Severity

KURRENCYPLAY-001

If the price of game tokens in the Play contract
remains lower than the market price due to price
fluctuations of game tokens or a delay in updating the
exchangeRatio , arbitrage may happen, which leads

to depletion of game tokens held by the Play
contract.

Informational

Description
Due to price fluctuations of game tokens or a delay in updating the exchangeRatio , the price of
game tokens in the Play contract may differ from the market price. If the price of game tokens in
the Play contract is low compared to other markets, game tokens held by the Play contract may be
depleted by arbitrage, and the market price may decrease. If the price gap widens in the opposite
case, users who have deposited collateral and borrowed less than the maximum LTV may be
unhappy. This situation prevents smooth contract usage for users who want to earn tokens for
gameplay, so it should be mitigated.

Impact
Informational

Recommendation
When setting the exchangeRatio in the keeper, it should not be set to a value that is a discount
to the market price. If there is logic to supply additional tokens automatically, a failsafe should be
added to check that the exchangeRatio is appropriate before doing so. Additionally, the
contract can include a check to deny borrowing if the keeper has not been active for a certain time
or a check to compare the price in Oracle with the current exchangeRatio based price.

Patch
Won't Fix

 WEMADE - Kurrency Security Audit | 9© 2023 ChainLight, Theori. All rights reserved

Allowing arbitrage is intended by design. But the team will double-check if it would lead to
excessive insurance of game tokens at the early stage.

 WEMADE - Kurrency Security Audit | 10© 2023 ChainLight, Theori. All rights reserved

#2 KURRENCYPLAY-002 rpow() function is missing in

MathUpgradeable library

ID Summary Severity

KURRENCYPLAY-002
MathUpgradeable.sol library does not implement
rpow() which exists in Math.sol .

Informational

Description
MathUpgradeable.sol library does not implement rpow() which exists in Math.sol , so the

code that calls rpow() will not be compiled when MathUpgradeable.sol library is used instead
of Math.sol in the future.

Impact
Informational

Recommendation
Implement Math.rpow() in MathUpgradeable.sol or delete the library if it is unnecessary.

Patch
Fixed

It is fixed as recommended.

 WEMADE - Kurrency Security Audit | 11© 2023 ChainLight, Theori. All rights reserved

#3 KURRENCYPLAY-003 SafeERC20 library must check that the

token address is a contract

ID Summary Severity

KURRENCYPLAY-003
Functions in the SafeERC20 library that take a
token as an argument must check that the token

address is a contract.
Informational

Description
Functions in the SafeERC20 library that take a token as an argument do not check that the
token address is a contract. The code below calls the token and checks the result to

determine whether to revert.

((boolbool success success,, bytesbytes memorymemory data data)) == addressaddress((tokentoken))..callcall((abiabi..encodeWithSeleencodeWithSele
ctorctor((functionfunction selector selector,, to to,, value value))));;
requirerequire((success success &&&& ((datadata..length length ==== 00 |||| abi abi..decodedecode((datadata,, ((boolbool)))))),, "SafeER"SafeER
C20: TRANSFER_FAILED"C20: TRANSFER_FAILED"));;

If the token address is not a contract, it always does not revert regardless of whether the
function call succeeds or fails. Therefore, the protocol may behave differently than intended if the
contract uses the SafeERC20 library without validating the token address. We haven't found
any paths that use invalid token addresses, but fixing them is recommended because it differs
from the expected behavior of the SafeERC20 library.

Impact
Informational

Recommendation
In the SafeERC20 library, functions that take a token as an argument must check that the
token address is a contract (code length is non-zero).

Patch

 WEMADE - Kurrency Security Audit | 12© 2023 ChainLight, Theori. All rights reserved

Fixed

It is fixed as recommended.

 WEMADE - Kurrency Security Audit | 13© 2023 ChainLight, Theori. All rights reserved

#4 KURRENCYPLAY-004 Dust threshold should be reduced for

tokens with decimals lower than 18

ID Summary Severity

KURRENCYPLAY-004

PlayManager._updateDebtInfo() rounds down
the debt to 0 if there is a little debt (dust) left after
repayment, but this threshold is based on $1 tokens
with 18 decimals. So, dust's value can be large
enough to drain the funds if the token's decimals
is lower and the price is the same or higher.

Medium

Description
When the token price is the same as $1, the dust value of the 18 decimals token is about
$0.000000000000001, but in the case of 6 decimals, it is about $0.001. Since a transaction fee of
approximately $0.1 is incurred while performing borrow and repay, it is difficult to exploit this even
if the decimals is low. However, it may become exploitable if the token's price is high or the
attack cost is reduced in the future due to various reasons, such as lower transaction fees or
lower price of the native token.

Impact
Medium

Since most ERC20 tokens use 18 decimals and the price is not that high, the likelihood of a
profitable attack is low, and even in a situation where an attack is possible, a substantial number of
repetitions is required to steal a significant amount of funds.

Recommendation
When the decimals of the gameToken is less than 18, the dust threshold can be lowered to 10 to
reduce the possibility of attack significantly, and tokens with low decimals and high prices should
not be used because they can still be a problem.

Patch
Fixed

 WEMADE - Kurrency Security Audit | 14© 2023 ChainLight, Theori. All rights reserved

It is fixed as recommended.

 WEMADE - Kurrency Security Audit | 15© 2023 ChainLight, Theori. All rights reserved

#5 KURRENCYPLAY-005 PlayManager should use token's decimals

instead of 18 for some calculations involving token amount

ID Summary Severity

KURRENCYPLAY-005

Suppose the decimals of the collateral token or game
token are not 18. In that case, incorrect results may
occur in the isOverMaxBorrowableAmount() ,
getCollateralValueOf() , and
getBorrowableAmount() functions of the
PlayManager contract, which may lead to the theft

of funds.

Critical

Description
getCollateralValueOf() returns the collateral value deposited in the vault converted to USD

value in 1e18 units. For this purpose, return amount * tokenPrice / 1e18; is used, where
tokenPrice means the USD value of 1 token (1e18 decimals). Therefore, the above formula can

be viewed as calculating the token quantity (amount / 1e18) * USD price of one token
(tokenPrice). However, amount / 1e18 does not consider the case where the decimals of
the collateral token are not 18. (It must have been divided by the decimals of the collateral token,
not 1e18 .)

Similar to above, the decimals of the game token must be considered when calculating
maxBorrowAmount in isOverMaxBorrowableAmount() . In the formula for calculating the

maximum amount of game tokens that can be borrowed, uint maxBorrowAmount =
collateralValue * exchangeRatio / 1e18; , collateralValue is the USD value of
collateral in 1e18 units, and the exchangeRatio variable is in 1e18 units, so the decimals of
maxBorrowAmount is always fixed to 18. Therefore, the formula should be changed to uint
maxBorrowAmount = collateralValue * exchangeRatio * (10 **
gameToken.decimals()) / 1e36; to take into account the decimals of the game token.

Also in getBorrowableAmount() , formula uint vaultBorrowableAmountMax =
getCollateralValueOf(pairId, vaultBalance) * exchangeRatio / 1e18; should be
changed to uint vaultBorrowableAmountMax = getCollateralValueOf(pairId,
vaultBalance) * exchangeRatio * (10 ** gameToken.decimals()) / 1e36; to take into
account the decimals of the game token.

 WEMADE - Kurrency Security Audit | 16© 2023 ChainLight, Theori. All rights reserved

Impact
Critical

Suppose the decimals of the collateral token or game token are not 18. In that case, an excessive
amount of game tokens can be loaned compared to the collateral, or a tiny amount can be loaned
compared to the collateral.

Recommendation
All changes below must be applied.

1. Change 1e18 to decimals of collateralToken in getCollateralValueOf() .
2. Change the formula in isOverMaxBorrowableAmount() to uint maxBorrowAmount =

collateralValue * exchangeRatio * (10 ** gameToken.decimals()) / 1e36; .
3. Change the formula in getBorrowableAmount() to uint vaultBorrowableAmountMax =

getCollateralValueOf(pairId, vaultBalance) * exchangeRatio * (10 **
gameToken.decimals()) / 1e36; .

Patch
Fixed

It is fixed as recommended.

 WEMADE - Kurrency Security Audit | 17© 2023 ChainLight, Theori. All rights reserved

#6 KURRENCYPLAY-006 MP enabled NCPStaking pool must not be

used in the investor

ID Summary Severity

KURRENCYPLAY-006

There is a problem with the MP reward
implementation in the third-party contract
NCPStaking , which can cause losses to the

protocol when using pools with that feature enabled.

Informational

Description
Due to a problem with the MP reward implementation in the NCPStaking contract, the
InvestorWonder contract may receive less reward if they interact with the NCPStaking

contract less frequently than other users when investing assets in a pool with the MP feature
enabled. Kurrency Play deposits WEMIX collateral into the WONDER staking pool. WONDER staking
pool is a pool registered to the NCPStaking contract, and according to WEMIX.FI docs it does not
support the MP feature. If a WONDER staking pool with MP enabled or a DIOS staking pool that
originally supports MP is accidentally used for collateral asset investment, the protocol may suffer
losses.

Impact
Informational

It is not a problem as of now since the protocol only uses a WONDER staking pool that does not
support MP .

Recommendation
Until the bug in the NCPStaking contract is fixed, the team should be careful not to use pools
that support the MP feature.

Patch
Fixed

 WEMADE - Kurrency Security Audit | 18© 2023 ChainLight, Theori. All rights reserved

It is fixed as recommended.

 WEMADE - Kurrency Security Audit | 19© 2023 ChainLight, Theori. All rights reserved

#7 KURRENCYPLAY-007 Additional sanity checks

ID Summary Severity

KURRENCYPLAY-007

It is necessary to add a validation process to prevent
incorrect settings caused by operational mistakes,
mitigate potential issues, and implement defense-in-
depth.

Informational

Description
If PlayFeeBox.withdrawFee() is called before feeReceiver is set, the accumulated fee
may be burned.
Add the missing onlyFeeReceiverSet() modifier to PlayFeeBox.withdrawFee() .

PlayManager.setMultipleVaultWhitelist() does not check if the address to be
whitelisted has a debt, so if a user with a debt is whitelisted, they will not be able to repay
their existing debt, and the collateral will be locked.
In PlayManager.setMultipleVaultWhitelist() , check if the address to be whitelisted
has a debt.

PlayConfig.setWonderStaking() and PlayConfig.setWWEMIX() do not check if the
address passed in as an argument is a contract.
Check that the address passed in as an argument is a contract.

The address validation of _gameToken and _investor in PlayManager.addPairInfo()
should validate that they are contracts instead of comparing them to zero.

In PlayCore._deposit() , if a token other than the native token is collateralized, checking
that the msg.value is 0 can prevent accidentally sending the native token.

 WEMADE - Kurrency Security Audit | 20© 2023 ChainLight, Theori. All rights reserved

Add the nonReentrant modifier to playRewardDistributor.distributeRewardAll() .

Impact
Informational

Recommendation
Apply the fixes suggested in the Description.

Patch
Fixed

It is fixed as recommended.

 WEMADE - Kurrency Security Audit | 21© 2023 ChainLight, Theori. All rights reserved

Revision History

Version Date Description

1.0 Oct 13, 2023 Initial version

WEMADE - Kurrency Security Audit | 22© 2023 ChainLight, Theori. All rights reserved

Theori, Inc. (“We”) is acting solely for the client and is not responsible to any other party.
Deliverables are valid for and should be used solely in connection with the purpose for which they
were prepared as set out in our engagement agreement. You should not refer to or use our name
or advice for any other purpose. The information (where appropriate) has not been verified. No
representation or warranty is given as to accuracy, completeness or correctness of information in
the Deliverables, any document, or any other information made available. Deliverables are for the
internal use of the client and may not be used or relied upon by any person or entity other than
the client. Deliverables are confidential and are not to be provided, without our authorization
(preferably written), to entities or representatives of entities (including employees) that are not
the client, including affiliates or representatives of affiliates of the client.

WEMADE - Kurrency Security Audit | 23© 2023 ChainLight, Theori. All rights reserved

